Timely Detection of Changes in the Meridional Overturning Circulation at 26°N in the Atlantic

نویسندگان

  • JOHANNA BAEHR
  • HELMUTH HAAK
  • STEVEN ALDERSON
  • STUART A. CUNNINGHAM
  • JOHANN H. JUNGCLAUS
  • JOCHEM MAROTZKE
چکیده

It is investigated how changes in the North Atlantic meridional overturning circulation (MOC) might be reliably detected within a few decades, using the observations provided by the RAPID-MOC 26°N array. Previously, detectability of MOC changes had been investigated with a univariate MOC time series exhibiting strong internal variability, which would prohibit the detection of MOC changes within a few decades. Here, a modification of K. Hasselmann’s fingerprint technique is used: (simulated) observations are projected onto a time-independent spatial pattern of natural variability to derive a time-dependent detection variable. The fixed spatial pattern of natural variability is derived by regressing the zonal density gradient along 26°N against the strength of the MOC at 26°N within the coupled ECHAM5/Max Planck Institute Ocean Model’s (MPI-OM) control climate simulation. This pattern is confirmed against the observed anomalies found between the 1957 and the 2004 hydrographic occupations of the section. Onto this fixed spatial pattern of natural variability, both the existing hydrographic observations and simulated observations mimicking the RAPID-MOC 26°N array in three realizations of the Intergovernmental Panel on Climate Change (IPCC) scenario A1B are projected. For a random observation error of 0.01 kg m , and only using zonal density gradients between 1700and 3100-m depth, statistically significant detection occurs with 95% reliability after about 30 yr, in the model and climate change scenario analyzed here. Compared to using a single MOC time series as the detection variable, continuous observations of zonal density gradients reduce the detection time by 50%. For the five hydrographic occupations of the 26°N transect, none of the analyzed depth ranges shows a significant trend between 1957 and 2004, implying that there was no MOC trend over the past 50 yr.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting potential changes in the meridional overturning circulation at 26◦N in the Atlantic

We analyze the ability of an oceanic monitoring array to detect potential changes in the North Atlantic meridional overturning circulation (MOC). The observing array is ‘deployed’ into a numerical model (ECHAM5/MPI-OM), and simulates the measurements of density and wind stress at 26◦N in the Atlantic. The simulated array mimics the continuous monitoring system deployed in the framework of the U...

متن کامل

Mechanisms of Atlantic Meridional Overturning Circulation variability simulated by the NEMO model

We have investigated mechanisms for the Atlantic Meridional Overturning Circulation (AMOC) variability at 26.5 N (other than the Ekman component) that can be related to external forcings, in particular wind variability. Resolution dependence is studied using identical experiments with 1 and 1/4 NEMO model runs over 1960–2010. The analysis shows that much of the variability in the AMOC at 26 N c...

متن کامل

A novel transport assimilation method for the Atlantic Meridional Overturning Circulation at 26◦N

One of the prerequisites for achieving skill in decadal climate prediction is to successfully initialise and predict the circulation in the Atlantic Ocean. The RAPID array measures the Atlantic Meridional Overturning Circulation (MOC) at 26◦N. Here we develop a method to include these observations in the UK Met Office Decadal Prediction System (DePreSys). The proposed method uses covariances of...

متن کامل

Mountain ranges favour vigorous Atlantic meridional overturning

[1] We use a global Ocean-Atmosphere General Circulation Model (OAGCM) to show that the major mountain ranges of the world have a significant role in maintenance of the Atlantic Meridional Overturning Circulation (AMOC). A simulation with mountains has a maximum AMOC of 18 Sv (1 Sv = 10 m s ) compared with 0 Sv for a simulation without mountains. Atlantic heat transport at 25°N is 1.1 PW with m...

متن کامل

Estimated Decadal Changes in the North Atlantic Meridional Overturning Circulation and Heat Flux 1993–2004

Results from a global 1° model constrained by least squares to a multiplicity of datasets over the interval 1992–2004 are used to describe apparent changes in the North Atlantic Ocean meridional overturning circulation and associated heat fluxes at 26°N. The least squares fit is both stable and adequately close to the data to make the analysis worthwhile. Changes over the 12 yr are spatially an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007